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Abstract

The propagation of acoustic waves in porous materials having a rigid frame is well described by several
models. A doubt about the causality of these models has been raised recently in the literature. A verification
of the causality of these models is studied in this paper using the Kramers–Kronig dispersion relations
adapted to the frequency power law dependence of the attenuation. It is shown that these models are causal
in the high- and low-frequency range. A time domain wave equation and time-causal theory have been
treated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Recently there have been suggestions in the acoustics literature [1] that models [2,3] describing
the propagation of acoustic waves in the porous materials are not causal, especially at high
frequencies and that Kramers–Kronig relations are not satisfied.
The ultrasonic characterization of porous materials saturated by air is of a great interest for a

large class of industrial applications. These materials are frequently used in the automotive and
aeronautics industries or in the building trade. The determination of the properties of a medium
form waves that have been reflected by or transmitted through the medium is a classical inverse
scattering problem. Such problems are often approached by taking a physical model of the
scattering process, generating a synthetic response for some assumed values of the parameters,
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adjusting these parameters until reasonable agreement is obtained between the synthetic response
and the observed data.
Ultrasonic characterization of materials is often achieved by measuring the attenuation

coefficient and phase velocity in frequency domain or by measuring a loss temporal operator in
time domain. In frequency domain, measurements of the attenuation coefficient may be more
robust than measurements of phase velocity. In these situations, application of the Kramers–
Kronig dispersion relations may allow the determination of the phase velocity from the measured
attenuation coefficient.
At present most analyses of signal propagation are carried out in the frequency domain using

the Fourier transform to translate the results in the time domain and vice versa. This however has
several limitations. The first is that the transformation is difficult to compute numerically with
sufficient accuracy for non-analytical functions. For example, using Fourier transform to obtain
time domain results for a lossy material is a more complicated approach than using a true time
domain analysis, and the numerical results are less accurate. The second disadvantage is that by
working in the frequency domain some numerical information is lost or hard to recover. For
example, in the case of noisy data it may be difficult to reconstruct the chronological events of a
signal by phase unwrapping. Consequently, it is difficult to obtain a deep understanding of
transient signal propagation using frequency domain method.
The time domain response of the material is described by an instantaneous response and a

‘‘susceptibility’’ kernel responsible for the memory effects. A time domain approach differs from
the frequency analysis in that the susceptibility functions of the problem are convolution
operators acting on the velocity and pressure fields, and therefore a different algebraic formalism
has to be applied to solve the wave equation. The observation that the asymptotic expressions of
stiffness and damping in porous materials are proportional to fractional powers of frequency
suggests the fact that time derivatives of fractional order might describe the behaviour of sound
waves in these kinds of materials, including relaxation and frequency dependence.
The Kramers–Kronig relations can serve as a check on the causal consistency of a theoretical

model. The derivation of dispersion relations based on causality had its beginning in 1926 with
Kronig’s work relating to the dispersion and the absorption of X-rays [4]. In 1927, Kramers
showed that the existence of electromagnetic dispersion relations implies that no signal can
propagate in a medium faster than the vacuum speed of light (relativistic causality) [5].
Eventually, the general causal basis for the dispersion relations was appreciated [6] using the
physical restrictions on the behaviour of a stable linear system. In addition to their original
application in electromagnetism, the Kramers–Kronig relations have been used in many other
fields, especially nuclear physics and scattering [6–8] and electrical engineering [9–14]. Their
application in acoustics is somewhat less developed. Ginzberg [15] proposed their use and, since
then, these relations have been studied [16] and used in several areas like geophysics [17],
underwater acoustics [18] and both medical and non-destructive evaluation ultrasound [19–22].
When a broadband acoustic pulse passes through a layer of medium, the waveform of the pulse

changes as a result of the attenuation and dispersion in the medium. Many media, including
porous materials, have been observed to have an attenuation function which increases with
frequency. As a result, the higher frequency components of the pulse are attenuated more than the
lower frequency components [23]. After passing through the layer, the transmitted pulse is not just
a scaled down version of the incident pulse, but will have a different shape. Dispersion refers to
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the phenomenon that the phase velocity of a propagating wave changes with the frequency.
Dispersion causes additional change in the waveform of the propagating pulse because the wave
components with different frequencies travel at different speeds.

2. Mathematical background

Frequent use of Fourier transform analysis will be made so it is necessary to define the
transform conventions employed. The time and space two-dimensional Fourier transforms, also
used in Refs. [24–26], are

Pðk;oÞ ¼
Z

N

�N

Z
N

�N

pðz; tÞe�iðkz�otÞ dz dt;

Vðk;oÞ ¼
Z

N

�N

Z
N

�N

vðz; tÞe�iðkz�otÞ dz dt: ð1Þ

Here the space z and wave number k variables have a conventional Fourier transform designated
as FT� and its inverse FT�1

� : The time t and angular frequency o transform are unconventional in
the sense that the argument of the exponent in the transform has a ‘‘þi’’ rather than ‘‘�i’’ as in
Eq. (1); therefore, the designations FTþ and FT�1

þ are for the ‘‘þi’’ type and its inverse.
The corresponding derivative transforms [12] are

FT�
@np

@zn

� �
¼ ðikÞnP;

FTþ
@np

@tn

� �
¼ ð�ioÞnP: ð2Þ

Higher order derivatives will be expressed later in the notation pzn ¼ @np=@zn:
For example if n ¼ 2; pzz ¼ @2p=@z2:
Later it will become necessary to use the definition of fractional derivative [23,27–30] to

derive wave equation in time domain. Therefore, we generalize the Fourier transform to fractional
order

FT�1
þ ð�ioÞnP ¼ Dn½PðtÞ�; ð3Þ

where Dn½xðtÞ� is the fractional derivative of order n defined by

Dn½xðtÞ� ¼ �
1

Gð�nÞ

Z t

0

ðt � uÞ�n�1xðuÞ du; ð4Þ

where n is real number and GðxÞ is the gamma function [31]. A fractional derivative no longer
represents the local variations of the function but on the contrary, it acts as a convolution integral
operator. More details about the properties of fractional derivatives and about fractional calculus
are given in Ref. [27].
In this paper generalized functions [32] and their transforms will be applied to derive a wave

equation in the time domain and to write the causal relationships.
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Some useful generalized function transform pair can be recast in the Fourier transform
convention used for time (angular) frequency to obtain for odd integer value of y:

FT�1
þ ½oy sgnðoÞ� ¼ y!=½pðitÞyþ1�; ð5Þ

FTþ½sgnðtÞ=tyþ1� ¼ �2ðiÞyoy½ln joj þ G�=y!; ð6Þ

where sgnðoÞ is the sign function and G is a constant set to zero.
Another set of cases of interest are those in which y is a non-integer. For non-integers, an

appropriate generalized function transform pair is

FT�1
þ ðjojyÞ ¼ Gðy þ 1Þ cos½ðy þ 1Þp=2�=ðpjtjyþ1Þ; ð7Þ

FTþ½sgnðtÞ=jtj
yþ1� ¼ ip sgnðoÞjojy=y! sin½ðy þ 1Þp=2�: ð8Þ

This case above is more general than the definition of fractional derivatives given by Samko et al.
[27] in Eq. (3).

3. Theory

In a variety of media (e.g., porous media, liquids and tissue) over a finite bandwidth, the
attenuation of acoustic waves appears to be adequately modelled by a power law dependence on
frequency [33–39]:

a ¼ a0jojy; ð9Þ

where o is angular frequency, and a0 has units of Np/m and the loss is expð�azÞ: The absolute
sign is a consequence of the real even properties of absorption as a function of frequency, y is a
real positive finite number. For most materials, the power law exponent y has value from 0 to 2.
Unlike the electrical network applications of the Kramers–Kronig relations, acoustics pose a
unique problem as mentioned in Ref. [33]. Networks have frequency transfer functions expressed
as algebraic ratio of pole-zero polynomial products which have a denominator which is at least
one order higher than the numerator. In acoustics, the propagation problems of interest may
occur in different forms, such as power law dependence on frequency. The Paley–Wiener theorem
[40] states that for a transfer function of the form

HðoÞ ¼ AðoÞeiyðoÞ ¼ ðe�aðoÞzÞeibðoÞz; ð10Þ

the logarithm of the magnitude A must meet the requirementZ
N

�N

jln AðoÞj
1þ o2

do ¼
Z

N

�N

jaðoÞj
1þ o2

dooN; ð11Þ

and A must be square-integrable in order for causality to hold [11]. These requirements restrict the
values of power law of aðoÞ to that one.
An alternative time-causal theory that provided an inherently causal model [33] was developed

for media with attenuation obeying a frequency power law because of the (initial) apparent failing
of the Kramers–Kronig dispersion. A key to the development of the time-causal dispersion
relations was the use of generalized functions, as opposed to ordinary point function, to represent
physical quantities (e.g., attenuation coefficient and phase velocity). The generalized functions
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have been used for dispersion measurements in other areas of physics (e.g., particle physics) but
they do not appear to have found as much use in ultrasonic measurements, with the exception of
the afore-mentioned time-causal theory. By considering the complex wave number as generalized
function, a generalized Paley–Wiener theorem [41] is available that permits the relaxation of the
restriction on the high-frequency behavior of the attenuation coefficient. Specifically, any frequency
power law attenuation represented as a generalized function satisfies the generalized Paley–Wiener
theorem. Using this concept of generalized functions, Waters et al. [36] demonstrate the equivalence
of the Kramers–Kronig frequency domain approach to that of the time-causal approach.

3.1. Porous materials having a rigid frame

In the acoustics of porous materials, one distinguishes two situations according to whether the
frame is moving or not. In the first case, the dynamics of the waves due to the coupling between
the solid skeleton and the fluid is well described by the Biot theory [42,43]. In air-saturated porous
media, the structure is generally motionless and the waves propagate only in fluid. This case is
described by the model of equivalent fluid which is a particular case of the Biot model.

3.2. Model of equivalent fluid

Let a homogeneous isotropic porous material with porosity f be saturated with a compressible
and viscous fluid of density rf and viscosity Z: It is assumed that the frame of this porous solid is
not deformable when it is subjected to an acoustic wave. It is the case, for example, for a porous
medium which has a large skeleton density or very large elastic modulus or weak fluid–structure
coupling. To apply the results of continuum mechanics it is required that the wavelength of sound
should be much larger than the sizes of the pores or grains in the medium.
In such a porous material, acoustic waves propagate only in the fluid, so it can be seen as an

equivalent fluid, the density and the bulk modulus of which are ‘‘renormalized’’ by the fluid–
structure interactions. A prediction of the acoustic behaviour of the porous material requires the
determination of the dynamic tortuosity eðoÞ and the dynamic compressibility mðoÞ: These
functions depend on the physical characteristics of the fluid in the pore space of the medium and
are independent of the dynamic characteristics of the structure. The basic equations of the model
of equivalent fluid are:

rf eðoÞ
@vi

@t
¼ �rip;

mðoÞ
Ka

@p

@t
¼ �r 
 v: ð12Þ

In these relations, v and p are the particle velocity and the acoustic pressure, Ka ¼ gP0 is the
compressibility modulus of the fluid. The first equation is the Euler equation, and the second one
is a constitutive equation obtained from the equation of mass conservation associated with the
behaviour (or adiabatic) equation. eðoÞ and mðoÞ are the dynamic tortuosity of the medium and
the dynamic compressibility of the air included in the porous material.
These two factors are complex functions which heavily depend on the frequency f ¼ o=2p:

Their theoretical expressions are given by Johnson et al. [44], Allard [45] and Lafarge [46]:

eðoÞ ¼ eN 1�
Zf

ioeNrf k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

4e2
N

k2
0rf o

ZL2f2

s0
@

1
A; ð13Þ
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mðoÞ ¼ g� ðg� 1Þ 1�
Zf

iorf k0
0Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i

4k
02
0 rf oPr

Zf2L02

s0
@

1
A

�1

; ð14Þ

where i2 ¼ �1; g represents the adiabatic constant, Pr the Prandtl number, eN the tortuosity, k0
the static permeability, k0

0 the thermal permeability [47], L and L0 are the viscous and thermal
characteristic lengths, respectively [44,48]. This model was initially developed by Johnson [44], and
completed by Allard [48] by adding the description of thermal effects. Later on, Lafarge [47] has
introduced the parameter k0

0 which describes the additional damping of sound waves due to the
thermal exchanges between fluid and structure at the surface of the pores.
The functions eðoÞ and mðoÞ express the viscous and thermal exchanges between the air and the

structure which are responsible for the sound damping in acoustics materials. These exchanges are
due on the one hand to the fluid–structure relative motion and on the other hand to the air
compression–dilatations produced by the wave motion. The parts of the fluid affected by these
exchanges can be estimated by the ratio of a microscopic characteristic length of the media, for
example, the sizes of the pores, and the viscous and thermal skin depth thickness d ¼ ð2Z=or0Þ

1=2

and d0 ¼ ð2Z=or0PrÞ
1=2; respectively. For the viscous effects this domain corresponds to the region

of the fluid in which the velocity distribution is perturbed by the frictional forces at the interface
between the viscous fluid and motionless structure. For the thermal effects, it corresponds to the
fluid volume affected by the heat exchange between the two phases of the porous medium. In this
model, the sound propagation is completely determined by the six following parameters:
f; eN; s ¼ Z=k0; k0

0;L and L0: In the next section it will be shown that the values of these
parameters are given by the low- and high-frequency wave equations for monochromatic waves.
To restore their validity for transient signals, they need to be written in the time domain.

3.3. Viscous domain

In this domain, the viscous forces are important everywhere in the fluid, the compression–
dilatation cycle in the porous material is slow enough to favour the thermal exchanges between
fluid and structure. At the same time the temperature of the frame is practically unchanged by the
passage of the sound wave because of the high value of its specific heat: the frame acts as a
thermostat. In this case the isothermal compressibility is directly applicable. This domain
corresponds to the range of frequencies such that viscous skin thickness d ¼ ð2Z=or0Þ

1=2 is much
larger than the radius of the pores r;

d
r
c1 ð15Þ

is called the low-frequency range. For these frequencies, the low-frequency approximations of the
response factor eðoÞ and mðoÞ are considered. When o-0; Eqs. (13) and (14), respectively,
become

eðoÞ ¼ e0 1�
Zf

ioe0rf k0

 !
; ð16Þ

mðoÞ ¼ g: ð17Þ
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e0 is the low-frequency approximation of the tortuosity given by Lafarge [46] and Norris [49] from
homogenation theory

e0 ¼
/vðrÞ2S

/vðrÞS2
; ð18Þ

where /vðrÞS is the average velocity of the viscous fluid for direct current flow within a volume
element small compared to the relevant wavelength, but large compared to the individual grains/
pores of solid.
For a wave travelling along the direction oz; the generalized forms of the basic equations (12) in

the frequency domain are now

rf e0ð�ioÞV þ sfV ¼ �Pz and
g

Ka

ð�ioÞP ¼ �Vz: ð19Þ

In this approximation the Euler equation expresses the balance between the driving force of the
wave, the drag forces Zfv=k0 due to the flow resistance of the material and the inertial forces. The
wave equation in time domain in viscous domain is given by

pzz �
e0g
c20

� �
ptt �

fs
rf e0c

2
0

 !
pt ¼ 0: ð20Þ

The first coefficient of this equation e0g=c20 leads to the sound velocity in the air filling the structure
of the material. This result shows that the viscous forces and the shape of the pores increase the
fluid density by the factor e0 > 1: The second coefficient fs=rf e0c

2
0 is the damping-distortion term

due to viscous effects which take place in the porous material. From these equations it is possible
to estimate e0 and the flow resistivity s ¼ Z=k0: By applying the double Fourier transform in z and
t to Eq. (20), the dispersion relation

k2 ¼ ðo=c0Þ
2ðe0gÞ þ ioðgfs=rf e0c

2
0Þ ð21Þ

is obtained, where k ¼ bþ ia and b ¼ o=cp:White [50] provides explicit equations for the real and
imaginary parts of k:
Taking the square root of Eq. (21) gives the expression for the wave number kðoÞ:

kðoÞ ¼
1

c0

ffiffiffiffiffiffiffiffi
fgs
2rf

s ffiffiffiffi
o

p
1þ

orf e0
2sf

þ i 1�
orf e0
2sf

� �� �
: ð22Þ

The imaginary part of the wave number kðoÞ gives the attenuation aðoÞ

aðoÞ ¼
1

c0

ffiffiffiffiffiffiffiffi
fgs
2rf

s ffiffiffiffi
o

p
�

re0
2sf

o3=2

� �
: ð23Þ

At very low frequency, the asymptotic expressions for eðoÞ and mðoÞ are

eðoÞ ¼ �
sf
iorf

; mðoÞ ¼ g: ð24Þ

In this range of frequencies, the basic equations (12) are

sfV ¼ �Pz and
g

Ka

ð�ioÞP ¼ �Vz; ð25Þ
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where the Euler equation is reduced to the Darcy’s law which defines the static flow resistivity
s ¼ Z=k0: The wave equation in time domain (20) in this case is reduced to

pzz þ
sfg
Ka

� �
pt ¼ 0: ð26Þ

The fields which are varying in time, the pressure, the acoustic velocity, etc., follow a diffusion
equation with the diffusion constant

D ¼
Ka

sfg
: ð27Þ

A quite similar result is given by Johnson [51]. However, the adiabatic constant g does not appear
in Johnson’s model in which the thermal expansion is neglected.
The dispersion relation in this case is given by

k2 ¼ ioðfs=rf e0c
2
0Þ ð28Þ

and the expression of kðoÞ is given by

kðoÞ ¼
1

c0

ffiffiffiffiffiffiffiffiffi
fs
rf e0

s
ð1þ iÞ

ffiffiffiffi
o

p
: ð29Þ

The attenuation aðoÞ is given by

aðoÞ ¼
1

c0

ffiffiffiffiffiffiffiffiffi
fs
rf e0

s ffiffiffiffi
o

p
: ð30Þ

3.4. Asymptotic domain

In this domain, the viscous effects are concentrated in a small volume near the frame and the
compression/dilatation cycle is faster than the heat transfer between the air and the structure, and
it is a good approximation to consider that the compression is adiabatic.
This domain corresponds to the range of frequencies such that viscous skin thickness d ¼

ð2Z=or0Þ
1=2 is smaller than the radius of the pores r; and corresponds to the high-frequency

approximation of the responses factors eðoÞ and mðoÞ when o-N are given by the relations

eðoÞ ¼ eN 1þ
2

L
Z

�iorf

 !1=2
0
@

1
A; ð31Þ

mðoÞ ¼ 1þ
2ðg� 1Þ

L0
Z

�ioPrrf

 !1=2

: ð32Þ

Using Eqs. (3) and (4), the expressions of the responses e and m are given in time domain [23] by

eðoÞ!
t
*eðtÞ ¼ eN dðtÞ þ

2

L
Z

prf

 !1=2

t�1=2

0
@

1
A�; ð33Þ
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mðoÞ!
t
*mðtÞ ¼ dðtÞ þ

2ðg� 1Þ
L0

Z
pPrrf

 !1=2

t�1=2

0
@

1
A�; ð34Þ

where � denotes the time convolution and dðtÞ is the Dirac function. In this model t�1=2� is
interpreted as a semi-derivatives operator following the definition of the fractional derivative [23]
given in Eq. (4).
When the wave propagates along the co-ordinate axis oz; the basic equations (12) will be written

in the time domain as

rf eNvt þ 2
rf eN
L

Z
prf

 !1=2Z t

�N

vt0ffiffiffiffiffiffiffiffiffiffiffi
t � t0

p dt0 ¼ �pz; ð35Þ

1

Ka

pt þ 2
g� 1

KaL0
Z

pPrrf

 !1=2Z t

�N

pt0ffiffiffiffiffiffiffiffiffiffiffi
t � t0

p dt0 ¼ �vz: ð36Þ

In these equations the convolutions express the dispersive nature of the porous material. They
take into account the memory effects due to the fact that the response of the medium to the wave
excitation is not instantaneous but needs more time to become effective. The retarding force is no
longer proportional to the time derivative of the acoustic velocity but is found to be proportional
to the fractional derivative of order 1/2 of this quantity. This occurs because the volume of fluid
participating to the motion is not the same during the whole length of the signal as it is in the case
of a fully developed steady flow. The phenomena may be understood by considering such a
volume of fluid in a pore to be in harmonic motion. At high frequencies, only a thin layer of fluid
is excited: the average shear stress is high. At a lower frequency, the same amplitude of fluid
motion allows a thicker layer of fluid to participate in the motion and consequently the shear
stress is less. The penetration distance of the viscous forces and therefore the excitation of the fluid
depends on frequency. In the time domain, such a dependence is associated with a fractional
derivative.
The propagation equation in time domain is given by

pzz �
eN
c20

� �
ptt �

2eN
c20

ffiffiffiffiffiffiffiffi
Z

prf

r
1

L
þ

ðg� 1Þffiffiffiffiffi
Pr

p
L0

 !
pt3=2 ¼ 0: ð37Þ

The solution of the propagation equation (37) in time domain is given in Ref. [29]. Application of
the transform, Eqs. (1)–(3), to this wave leads to a characteristic dispersion relation:

k2ðoÞ ¼
eN
c20

� �
o2 þ

eN
c20

ffiffiffiffiffi
2Z
rf

s
1

L
þ

ðg� 1Þffiffiffiffiffi
Pr

p
L0

 ! ffiffiffiffi
o

p
ð1þ iÞ; ð38Þ

the complex wave number is given in this time domain by

kðoÞ ¼

ffiffiffiffiffiffi
eN

p
c0

 !
oþ

ffiffiffiffiffiffi
eN

p
c0

ffiffiffiffiffiffiffi
Z
2rf

r
1

L
þ

ðg� 1Þffiffiffiffiffi
Pr

p
L0

 ! ffiffiffiffi
o

p
ð1þ iÞ; ð39Þ
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the attenuation aðoÞ is the imaginary part of the wave number kðoÞ given by

aðoÞ ¼

ffiffiffiffiffiffi
eN

p
c0

ffiffiffiffiffiffiffi
Z
2rf

r
1

L
þ

ðg� 1Þffiffiffiffiffi
Pr

p
L0

 ! ffiffiffiffi
o

p
: ð40Þ

4. Time domain wave equation

It is possible to write a general dispersion relation for the propagation of ultrasonic waves in a
wide variety of media [24] as

k2ðoÞ ¼ ðo=cÞ2 þ i2ðo=cÞða0jojyÞ; ð41Þ

where kðoÞ ¼ bðoÞ þ iaðoÞ and c is the velocity of the medium. This relation is valid if
ðaðoÞ=bðoÞÞ2{1 and this inequality defines a finite frequency range in which the general lossy
wave equation developed is valid. This approximation is used widely for the linear case [20,25,52]
and non-linear cases such as the Burger’s equations and KZK equations [53]. In the case of porous
materials, the above approximation is well satisfied when d=r{l; for high-frequency range.
Multiplying Eq. (41) by i2P; results in a generalized frequency domain lossy wave equation:

ðikÞ2P � ð�io=cÞ2P � i32ðo=cÞða0jojyÞP ¼ 0: ð42Þ

In the time domain, all coefficients of the differential terms of the wave equations are real
constants. This characteristic ensures real results for real excitation signals. Even when a
consistent, valid, frequency domain plane wave solution approach is used through either a
complex compressibility [20] or complex elastic constant [54], it cannot apply directly to the
solution of pulsed case, as also pointed out by Nachman et al. [55].
A problem arises when an attempt is made to transform the general frequency domain lossy

wave equation above (Eq. (42)) back to the space and time domain, as discussed in Refs. [23,24].
Under conventional Fourier transform (1), inversion by the k and o transform is defined only
when y is an even integer n:

pzz � 1=c2ptt � ð�1Þn=22a0=cptnþ1 ¼ 0: ð43Þ

For other powers of y; the Fourier transform derivative relations (1), fail to recover differential
terms with real constants. It is the case for the propagation in porous material at high-frequency
range in which the introduction of the fractional derivative definition is needed to write the wave
equation in time domain.
The approach that has been taken by Szabo [24] is to apply generalized functions and their

transforms to the problem [32]. If y is an odd integer, it is helpful to rewrite Eq. (41) in an
equivalent form

k2ðoÞ ¼ ðo=cÞ2 þ ioð2a0=cÞ sgnðoÞoy ð44Þ

for this odd integer case, a useful generalized function pair can be recast in the Fourier transform
convention used for time (angular) frequency Eq. (5), this pair permits one to write equivalent
time domain lossy wave equation

pzz � 1=c2ptt þ ð2=pcÞa0ðy þ 1Þ!ð�1Þðyþ1Þ=2=p�1=tðyþ2Þ ¼ 0: ð45Þ
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Another set of cases of interest are those in which y is a non-integer. An appropriate generalized
function transform pair from Lighthill and Szabo is given in Eq. (7); this non-integer case includes
the case of fractional derivative defined previously in Eq. (4); the general propagation equation in
time domain is that given by

pzz � ð1=c2Þptt þ ð2=pcÞa0Gðy þ 2Þ cos½ðy þ 1Þp=2�p�1=jtjðyþ2Þ ¼ 0: ð46Þ

In summary this wave equation can be expressed in the compact form as in Ref. [24]:

pzz � 1=c2ptt � ð2=cÞ@=@t½Lg;y;t�p� ¼ 0; ð47Þ

where Lg;y;t is a time domain convolution loss operator that is a function of time t; loss a and y;
and it differs for y as an even or odd integer or as a non-integer.

5. Causal theory

Causal means that an effect cannot precede its cause. For a time waveform initiated at t ¼ 0; its
spectral characteristics must meet certain requirements so that complete time cancellation occurs
for to0: Concise reviews of causality considerations can be found in Refs. [7,56] and in more
detail in Ref. [6]. The real and imaginary parts of causal complex transfer function are related by
Hilbert transforms as shown by Tithmarsh’s theorem [57].
To take advantage of these Hilbert transform relations, we define as in Refs. [24,36] a

propagation factor,

gðoÞ ¼ �aðoÞ þ ib0ðoÞ ð48Þ

with

bðoÞ ¼ b0 þ b0ðoÞ; ð49Þ

where b0ðoÞ is the extra dispersion term needed for causal propagation, b0 ¼ o=c; c ¼ c0=
ffiffiffiffiffiffi
eN

p
in

high-frequency range and c ¼ c0=
ffiffiffiffi
e0

p
at low-frequency range. At very-low-frequency range, we

have no propagation mode and then b0 ¼ 0: It has been recognized that the causal Hilbert
transform relationships have more general applicability and that specifically they also relate the
real and imaginary parts of complex propagation constant [6–10,13,15]. Both aðoÞ and b0ðoÞ are
also related through their Hilbert transforms in the present sign convention:

b0ðoÞ ¼ ½�1=ðpoÞ��½�aðoÞ�; ð50Þ

�aðoÞ ¼ ½1=ðpoÞ��b0ðoÞ: ð51Þ

By defining

La;y;t ¼ FT�1
þ ½�aðoÞ�;

Lb0;y;t ¼ FT�1
þ ½b0ðoÞ� ð52Þ

it is easy to write the above Hilbert transform in time domain, given

Lb0;y;t ¼ �i sgnðtÞLa;y;t; ð53Þ

La;y;t ¼ i sgnðtÞLb0;y;t: ð54Þ
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Eqs. (53) and (54) are the time-causal relations. These relations can be shown to be the Fourier
transform equivalents of the Hilbert transforms [8]. Because generalized function time domain
operators satisfying Eqs. (53) and (54) have no restriction on the value of y (assumed to be finite,
real), they have more general validity (for y > 1) than the Kramers–Kronig relations expressed in
the frequency domain. In the frequency domain, the Kramers–Kronig relations require knowledge
of either a or b0 at all frequencies, however, in time domain, each convolution of causal operator is
naturally limited by a finite length of an imput pressure of total propagation operator.
The temporal propagation operator Lg;y;t ¼ FT�1

þ ½gðoÞ� is given by

Lg;y;t ¼La;y;t þ iLb0;y;t

¼ ½1þ sgnðtÞ�La;y;t

¼ 2HðtÞLa;y;t ð55Þ

Here HðtÞ is the step function [12] defined by

HðtÞ ¼

0; to0;

1=2; t ¼ 0;

1; t > 0:

8><
>: ð56Þ

The final causal lossy wave equation in time domain is given by

pzz � 1=c2ptt � ð4=cÞ@=@t½HðtÞLa;y;t�p� ¼ 0: ð57Þ

Because of the step function, the propagation time operator Lg;y;t is causal.
It is easy to find causal dispersion relations [33,38] for power law attenuation. The relative

dispersion term is given by

b0ðoÞ ¼ FTþ½Lb0;y;t�; ð58Þ

Loss operators, found from Eq. (52) with the help of generalized functions, came in three flavors,
according to whether y is an even or odd integer or a non-integer. These results, in combination
with Eq. (53) and generalized functions, can be used to obtain the dispersion results below. For
y ¼ 0 or an even integer

Lb0;y;t ¼ 0: ð59Þ

Therefore,

b0ðoÞ ¼ 0: ð60Þ

For y odd integer, from the results of Szabo [24,33] and Eqs. (53) and (58), the following
transform is sought:

b0ðoÞ ¼ FTþð½�i sgnðtÞ�½�a0ð�1Þ
ðyþ1Þ=2y!=ðptyþ1Þ�Þ: ð61Þ

Using a generalized function transform given in Eq. (6) helps in obtaining

b0ðoÞ ¼ �2a0oy½lnjoj þ G�=p: ð62Þ

For y non-integer, one seeks the transform of

b0ðoÞ ¼ FTþð½�i sgnðtÞ�ð�a0yðy þ 1Þ cos½ðy þ 1Þp=2�=ðpjtjyþ1ÞÞÞ: ð63Þ
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Again with the help of the transform of a generalized function Eq. (8), it is found that

b0ðoÞ ¼ �a0 cot½ðy þ 1Þp=2�ojojy�1: ð64Þ

These results were confirmed by Waters et al. [36,38].

6. Application to porous materials

Consider the case of porous material having a rigid frame. As shown previously the attenuation
aðoÞ is in the form a0oy; in the high-frequency range with y ¼ 0:5 and

a0 ¼

ffiffiffiffiffiffi
eN

p
c0

ffiffiffiffiffiffiffi
Z
2rf

r
1

L
þ

g� 1ffiffiffiffiffi
Pr

p
L0

 !
;

one then has the case of non-integer of y: From causal theory (Eq. (64)) the extra dispersion term
b0ðoÞ is given in this case by

b0ðoÞ ¼ �a0 cotð3p=4Þ
ffiffiffiffi
o

p
: ð65Þ

This extra dispersion term coincide with the one given by Johnson–Allard model (Eq. (39)):

kðoÞ ¼

ffiffiffiffiffiffi
eN

p
c0

 !
oþ a0o0:5ð1þ iÞ: ð66Þ

The Kramers–Kronig relations are then well satisfied. The Johnson et al. [44] and Allard [45]
models are then causal at high-frequency range. Some numerical simulations are compared to
experimental results in the high-frequency domain approximation of Johnson and Allard model.
Experiments are carried out in air with two broadband Ultran NCT202 transducers having a
190 kHz central frequency in air and a bandwith at 6 dB extending from 150 to 230 kHz: Pulses of
400 V are provided by a 5052PR Parametrics pulser/receiver (Fig. 1). Received signals are
amplified up to 90 dB and filtred above 1 MHz to avoid high-frequency noise. Fig. 2 shows the
comparison between experimental data of the attenuation of a plastic foams M1 having the
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following parameters: eN ¼ 1:07; f ¼ 0:96; L ¼ 220 mm and L0 ¼ 660 mm and the simulated data
of the attenuation using the Johnson and Allard model (Eq. (40)).
The wave velocity in frequency domain in the porous material cðoÞ is given by

cðoÞ ¼
1ffiffiffiffiffiffi

eN
p

=c0 þ b0ðoÞ=o
ð67Þ

for non-integer value of y; the expression of b0ðoÞ is given by the Kramers–Kronig relations and
causal theory Eq. (64) and the expression of the wave velocity in this case will be given by

cðoÞ ¼
1ffiffiffiffiffiffi

eN
p

=c0 � a0 cot½ðy þ 1Þp=2�jojy�1
: ð68Þ

Fig. 3 shows the comparison between the causal wave velocity Eq. (68) for the plastic foam M1
(Johnson and Allard Model of the attenuation) and experimental data of the wave velocity. These
results confirm the causality of the Johnson and Allard model in the high-frequency range. This is
in contradiction with analysis given by Berthelot [1] in which the author concludes by using the
Kramers–Kronig relations that the Johnson model is not causal in this range of frequency. In the
very-low-frequency approximation y ¼ 0:5; there is no propagation mode and b0 ¼ 0: One is in
the same situation as the high-frequency range with Kramers–Kronig relations adapted for a
non-integer value of y:
To test the models of porous material at all frequencies, one must use the general relation of the

wave number kðoÞ given by

kðoÞ ¼
o
c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðoÞmðoÞ

p
: ð69Þ
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eðoÞ and mðoÞ are given by the models of Johnson [44], Allard [48] and Lafarge [47]. The
attenuation which is the imaginary part of the wave number is not a power law of frequency
dependence in this general case and it is not possible to use the analysis developed before. We
must then use the general relation of Kramers–Kronig given by Eqs. (50) and (51). Fig. 4 shows
the comparison between the wave velocity simulated by the Kramers–Kronig relations and the
wave velocity simulated using the real part of kðoÞ:

cðoÞ ¼
o

bðoÞ
; ð70Þ

the weak difference between the two curves is essentially due to the numerical simulations.
In Fig. 5, a comparison between the numerical dynamic response of the Johnson and Allard

model and experimental data is given in terms of transmitted wave. Two plastic foams are
considered (M2 and M3). The theoretical expression of the dynamic response is given in Ref. [29].
The simulated signals are computed from the convolution of the Green function of the medium
with the incident signal generated by the transducer (Fig. 6). For porous media having a high
porosity like plastic foams, the reflected signal can be neglected. These materials have such a small
amount of rigid frame that the incident wave does not feel its effects. The experimental data are
deduced from the transmitted field scattered by a slab of two different plastic foams of finite depth
0pxpL and having different flow resistivities. The parameters of the foam M2 are: thickness
5 cm; aN ¼ 1:055; L ¼ 234 mm; L0 ¼ 702 mm; flow resistivity s ¼ 9000 N m�4 s and porosity
f ¼ 0:97; those of the foam M3 are: thickness 1:1 cm; aN ¼ 1:26; L ¼ 60 mm; L0 ¼ 180 mm;
s ¼ 38000 N m�4 s and f ¼ 0:98: The parameters of the foams are given by the Leclaire et al.
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method [58]. The expression of the Green function in time domain is given by

Gðx; tÞ ¼

0 if 0ptpx=c;

x

c

b0

4
ffiffiffi
p

p 1

ðt � x=cÞ3=2
exp �

b02x2

16c2ðt � x=cÞ

� �

þD
R t�x=c

0 hðt; xÞdx if tXx=c;

8>>>><
>>>>:

ð71Þ

where hðt; xÞ is of the form

hðt; xÞ ¼ �
1

4p3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt� xÞ2 � x2=c2
q 1

x3=2

Z 1

�1
exp �

wðm; t; xÞ
2

� �
ðwðm; t; xÞ � 1Þ

mdmffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p ð72Þ

with the following notations: wðm; t; xÞ ¼ ðDm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt� xÞ2 � x2=c2

q
þ b0ðt� xÞÞ2=8x; b0 ¼ Bc2

ffiffiffi
p

p
; and

D ¼ b02: The boundary and initial conditions are given by

pð0; tÞ ¼ giðtÞ and lim
t-0
t>0

pðx; tÞ ¼ lim
t-0
t>0

@p

@t
ðx; tÞ ¼ 0; ð73Þ

where giðtÞ is the incident signal generated by the transducer. The difference between experimental
data and simulated data in Fig. 5 for the response of the medium is slight and shows the causality
of the Johnson and Allard model.
It is easy to proof the causality of the Johnson model at all frequencies by simple analysis

without Kramers–Kronig relations; the next section is devoted to this aim, the same analysis can
be made for Allard and Lafarge model.
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6.1. Causality of the Johnson model

Consider the dynamic tortuosity or permeability. The frequency o can be considered as a
complex variable. These functions belong to the general class of functions termed ‘‘generalized
susceptibilities’’, a very useful description of their general properties is given in Ref. [59].
The causality is equivalent to the statement that the singularities in the complex o are located in

the lower half plane ðImðoÞo0Þ; the long wavelength condition which is specific to our problem
requires in addition that they are on the imaginary axis (Appendix A of Ref. [44]). The model
should satisfy the following conditions: all zeros, poles and branch points of the dynamic
tortuosity and compressibility must be in the lower half-plane. The dynamic tortuosity eðoÞ and
the dynamic permeability kðoÞ are given by

eðoÞ ¼ eN 1þ
Fð�i *oÞ
�i *o

� �
; kðoÞ ¼

k0

Fð�i *oÞ � i *o

with

F ð�i *oÞ ¼ 1�
M

2
i *o

� �1=2

;

where

*o ¼ o
eNrf k0

Zf

� �
and M ¼

8eN
L2fk0

:

For the model to be acceptable, it must satisfy the following conditions:

* Causality: for every pole, branch point or zero *o ¼ *os; of eðoÞ or kðoÞ; we must have
Imð *osÞp0:

* Long wavelength: Reð *osÞ ¼ 0:

It is sufficient to consider the singularities of kðoÞ:

1. Branch point at *o ¼ *os such that 1� ðM=2Þi *os ¼ 0; i.e the frequency *o ¼ *os is purely
imaginary negative. In this case causality and long wavelength condition is respected.

2. Pole at *o ¼ *op; such that

Fð�i *opÞ � i *op ¼ 0: ð74Þ

Setting z ¼ i *op; one has a pole of the permeability (zero of the tortuosity) when z satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

M

2
z

r
¼ z: ð75Þ

From Eq. (75) z is real and positive. There are no other singularities of the permeability. So, to
establish causality, it would suffice that all solutions *op of Eq. (74) have Im *opp0; i.e., the
solutions z of the above equation (75) have ReðzÞX0:
The long wavelength condition would require, in addition, ImðzÞ ¼ 0: These conditions are

well satisfied and the Johnson et al. model respects the causality and long wavelength condition.
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7. Conclusion

In this paper a verification of Kramers–Kronig relations in the Johnson and Allard and Lafarge
model is given. High- and low-frequency ranges are considered and the attenuation has been
shown to be a power law of frequency dependence in the two ranges of frequencies. Simplified
relations of Kramers–Kronig adapted to the case of media having a power law of frequency
dependence have been used given a proof that these models are causal at high- and low-frequency
range. An experimental validation of the causality of these models at high-frequency range is
given. A time domain wave equation and time domain causal theory have been treated also. The
attraction of a time domain based approach is that analysis is naturally bounded by the finite
duration of ultrasonic pressures and is consequently the most appropriate approach for the
transient signal.
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